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Abstract

In this paper, we propose a novel fuzzy least squares projection twin support
vector machines for class imbalance learning (FLSPTSVM-CIL). Unlike twin
support vector machine (TSVM) which solves two dual problems, we solve
two modified primal formulations by solving two systems of linear equations.
The proposed FLSPTSVM-CIL model seeks two projection directions such
that the samples of two classes are well separated in the projected space. To
avoid the singularity issues, we incorporate an extra regularization term to
make the optimization problem positive definite. As the real world data may
be imbalanced, we assign appropriate fuzzy weights to the samples such that
the classifier is not biased towards the samples of the majority class. The sta-
tistical analysis and experimental results on the publicly available UCI bench-
mark datasets show that the proposed FLSPTSVM-CIL performs better as
compared to the baseline models. To show the applications of the proposed
FLSPTSVM-CIL model on real world datasets, we performed classification
of Alzheimer’s disease and breast cancer patients. Experimental results show
that the generalization performance of the proposed FLSPTSVM-CIL model
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for the classification of the breast cancer patients and the mild cognitive
impairment versus Alzheimer’s disease subjects is better compared to the
baseline models.

Keywords: Support vector machines, Twin support vector machines, Fuzzy
membership, Class imbalance, Projections.

1. Introduction

Support vector machines (SVMs) [1, 2] have shown better generalization
performance and hence have been applied across different domains. Unlike
artificial neural networks (ANNs) which minimize the empirical risk, SVMs
implement the structural risk minimization principle. As a successful super-
vised learning classifier, SVMs have been used in domains like detection of
faces [3, 4], recognition of face expressions [5], identification of speakers [6],
detection of intrusion [7], pedestrain event classification [8], brain age esti-
mation [9] and so on. The major drawback with SVMs is the higher compu-
tational complexity. To minimize the complexity, formulations of generalized
eigen values for proximal SVMs (GEPSVM) [10] was proposed. Inspired by
the GEPSVM, twin support vector machine (TSVM) [11] solved two smaller
size quadratic programming problems (QPPs) instead of solving one large
size QPP. Computationally, TSVM is approximately four times faster than
SVMs. TSVM have been efficiently used in classification [12, 13, 14, 15],
regression [16, 17, 18, 19], ensemble learning [20, 21, 22] and multiclass clas-
sification [23] problems.

In class imbalance datasets, the SVM model gets biased towards ma-
jority class samples and hence shows lower generalization performance for
predicting minority class samples. Multiple techniques have been used to
handle imbalance problems in datasets. Fuzzy weights are assigned to the
data points in fuzzy support vector machines [24] to handle class imbalance
problem. Fuzzy least squares SVM [25] solves a system of equations and
assigns fuzzy weights to each sample to reduce the effect of outliers. Bilat-
eral weighted fuzzy SVM [26] and proximal bilateral weighted fuzzy SVMs
[27] assume that each data point belongs to both the classes with varying
fuzzy weights. Partition index is maximized in [28] while as the fuzzy SVM
[29] incorporates the minimum within class scatter matrix in the fuzzy SVM
formulation. Reduced universum TSVM [30] used universum concept to
handle the class imbalance problem. Fuzzy concept has also been explored
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in prosthetic hand myoelectric-based control systems [31]. Boosting SVM
[32] is proposed to handle the imbalance of classes. Oversampling technique
known as synthetic minority oversampling technique (SMOTE) [33], fuzzy
membership based twin SVM [34, 35] and general twin SVM with pinball
loss (Pin-GTSVM) [36] were proposed either to handle the class imbalance
problems or handle the noise issues.

To further improve the performance of GEPSVM, multi weight vector
projection SVM (MWVSVM) [37] solved a pair of eigen value problems and
seeks a weight vector such that the samples of each class are clustered around
its corresponding mean and the two classes are well separated. Motivated
by MWVSVM, recursive projection twin SVM (RPTSVM) [38] solved two
smaller size SVM problems to project the samples such that the samples are
clustered around the corresponding mean and the two classes are well sepa-
rated in the projected space. Least squares recursive projection twin SVM
(LSRPTSVM) [39] solved a system of linear equations which is faster com-
pared to solving two QPPs. LSRPTSVM was extended to nonlinear case
in [40] wherein the samples are projected in the kernel space to separate
the data samples in the high dimensional space. In [41], the formulation
extended the projection concept to multiclass problems. Comprehensive re-
view on TSVM [42] gives the state-of-art review on the twin support vector
machines based models. The projection based twin SVM models have also
been used in clustering problems [43]. Unified form of fuzzy C-means and
K-means algorithms and its partitional implementation [44] leads to better
performance in the clustering problems.

Motivated by robust fuzzy least squares twin SVMs (RFLSTSVM) [34]
and least squares recursive projection twin SVM (LSRPTSVM) [39], we pro-
pose a novel fuzzy least squares projection twin support vector machines
for class imbalance learning (FLSPTSVM-CIL). In fuzzy twin support vec-
tor machines (FTWSVM), existing fuzzy membership function [45, 46, 47]
based on the distance of the data from the centroid is used in TSVM model
[11]. The drawbacks of the RFLSTSVM is that 1) it assumes that the ma-
trices appearing in the dual formulation are invertible. 2) Empirical risk
minimization is implemented which results in lower generalization perfor-
mance. Similarly, the drawback of LSRPTSVM model is that it suffers in
class imbalance problems. The TSVM, LSTSVM and LSRPTSVM models
may be biased towards the majority class samples which results in lower gen-
eralization performance. Also, TSVM and FTWSVM models solve a pair of
quadratic programming problem (QPP) which is slower. To overcome these

3Jo
ur

na
l P

re
-p

ro
of



Journal Pre-proof
drawbacks, we propose a novel FLSPTSVM-CIL in which matrices in the pri-
mal formulation are positive definite and solve the linear system of equations
such that the samples of each class are clustered around its corresponding
mean and as far as possible from the samples of the other class. The pro-
posed FLSPTSVM-CIL model doesn’t require any optimization toolbox. For
computational efficiency, only one projection axis is generated for each class
in the proposed FLSPTSVM-CIL model. The advantages of the proposed
FLSPTSVM-CIL are:

• Unlike RFLSTSVM, the proposed FLSPTSVM-CIL incorporates an
extra regularisation in each objective function to maximise the mar-
gin. Also, structural risk minimization principle is implemented in the
proposed FLSPTSVM-CIL model which is the marrow of statistical
learning.

• The proposed FLSPTSVM-CIL model seeks projections such that the
samples of each class are clustered around its corresponding mean and
the samples of different classes are as far as possible.

• Unlike LSRPTSVM, the proposed FLSPTSVM-CIL assigns fuzzy weights
to each samples to reduce the effect of class imbalance.

• Experimental results show the efficacy of the proposed FLSPTSVM-
CIL compared to the baseline models.

The general outline of this paper: Section 1 gives introduction, related
work is given in Section 2, and Section 3 discusses the proposed work. Evalu-
ation of experimental results is given in Section 4 and conclusion with future
remarks are given in Section 5.

In this paper, all vectors are assumed as column vectors unless trans-
formed to row vector. Let A ∈ Rm1×n and B ∈ Rm2×n be the samples of the
positive and negative classes, respectively, of a binary classification problems.
Here, we assume that the class with minority samples is treated as positive
class while as the class with majority samples is treated as negative class.
Each sample x belonging to either of the classes is of the form x ∈ Rn where
n is the feature dimension. Imbalance ratio (IR) is defined as

IR =
Number of samples in negative class

Number of samples in positive class
. (1)
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2. Related Work

Here, we briefly discuss the formulations of baseline methods: twin SVM
(TSVM), least squares TSVM (LSTSVM), fuzzy TSVMs (FTWSVM) and
robust fuzzy LSTSVMs (RFLSTSVM).

2.1. TSVM

The objective function of the TSVM [11] for nonlinear case is expressed
as follows:

min
u1,b1

1

2
‖K(A,Ct)u1 + e1b1‖2 + c1e

t
2ξ1

s.t. − (K(B,Ct)u1 + e2b1) + ξ1 ≥ e2, ξ1 ≥ 0 (2)

and

min
u2,b2

1

2
‖K(B,Ct)u2 + e2b2‖2 + c2e

t
1ξ2

s.t. (K(A,Ct)u2 + e1b2) + ξ2 ≥ e1, ξ2 ≥ 0, (3)

where [u1; b1] and [u2; b2] are the hyperplanes proximal to positive and nega-
tive classes, respectively, ξi and ei are the slack variables and vector of ones,
respectively, for i = 1, 2.

The dual problems of (2) and (3), with α and β as Lagrange multipliers,
are given as follows:

Max
α

et2α−
1

2
αtF (EtE)−1F tα (4)

s.t. 0 ≤ α ≤ c1e2

and

Max
β

et1β −
1

2
βtE(F tF )−1Etβ (5)

s.t. 0 ≤ β ≤ c2e1,

where F = [K(B,Ct) e2], E = [K(A,Ct) e1] and C = [A;B]. Solving (4)
and (5) leads to following hyperplanes:

[
u1
b1

]
= −(EtE + δI)−1F tα, (6)

[
u2
b2

]
= (F tF + δI)−1Etβ, (7)
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where a small positive number δ avoids the ill conditioning of the matrices
and I is the identity matrix of appropriate dimensions.

2.2. LSTSVM

Least squares twin SVM (LSTSVM) [48] solves a system of linear equa-
tions which is faster as compared to solving a QPP.

The primal problem of LSTSVM model is expressed as follows:

min
u1,b1

1

2
‖K(A,Ct)u1 + e1b1‖2 +

c1
2
ξt1ξ1 (8)

s.t. − (K(B,Ct)u1 + e2b1) + ξ1 = e2

and

min
u2,b2

1

2
‖K(B,Ct)u2 + e2b2‖2 +

c2
2
ξt2ξ2 (9)

s.t. K(A,Ct)u2 + e1b2 + ξ2 = e1.

Using the constraints in the corresponding formulation, we get

min
u1,b1

1

2
‖(K(A,Ct)u1 + e1b1)‖2 +

c1
2
‖K(B,Ct)u1 + e2b1 + e2‖2. (10)

Taking the gradient of QPP (10) w.r.t. u1 and b1 and setting it to zero,
we get

[
u1
b1

]
= −(F tF +

1

c1
EtE)−1F te2. (11)

Similarly, substitute the constraints in the corresponding formulation of
(9) and take the gradient of QPP w.r.t. u2 and b2 and setting it to zero, we
get

[
u2
b2

]
= (EtE +

1

c2
F tF )−1Ete1. (12)
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2.3. FTWSVM

Distance based fuzzy membership weights [45, 46, 47] are incorporated in
the formulation of TSVM [11]. The objective functions of the FTWSVM are
given as

min
u1,b1

1

2
‖K(A,Ct)u1 + e1b1‖2 + c1s

t
2ξ1

s.t. − (K(B,Ct)u1 + e2b1) + ξ1 ≥ e2, ξ1 ≥ 0 (13)

and

min
u2,b2

1

2
‖K(B,Ct)u2 + e2b2‖2 + c2s

t
1ξ2

s.t. K(A,Ct)u2 + e1b2 + ξ2 ≥ e1, ξ2 ≥ 0, (14)

where ξi represent the slack variables, ci represents the penalty parameters
and si represent the fuzzy membership weights. Here, distance of a sample
from the class centroid is used as the fuzzy membership weight. Let d denote
how far the sample is from the class centroid and δ be a small positive integer
then the fuzzy membership function is given as:

fmem = 1− d

max(d) + δ
. (15)

Similar to TSVM, the dual of objective functions (13) and (14) is given
as

min
α

1

2
αtF (EtE)−1F tα− et2α

s.t. 0 ≤ α ≤ s2c1 (16)

and

min
β

1

2
βtE(F tF )−1Etβ − et1β

s.t. 0 ≤ β ≤ s1c2. (17)

The optimal hyperplanes are given as
[
u1
b1

]
= −(EtE + δI)−1F tα (18)

and

[
u2
b2

]
= (F tF + δI)−1Etβ, (19)

where a small value δ avoids the ill conditioning of the matrices.
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2.4. RFLSTSVM

The formulation of robust fuzzy least squares twin SVM (RFLSTSVM)
[34] is given as:

min
u1,b1

1

2
‖K(A,Ct)u1 + e1b1‖2 +

c1
2

(s2ξ1)
t(s2ξ1)

s.t. − (K(B,Ct)u1 + e2b1) + ξ1 = e2, (20)

and

min
u2,b2

1

2
‖K(B,Ct)u2 + e2b2‖2 +

c2
2

(s1ξ2)
t(s1ξ2)

s.t. K(A,Ct)u2 + e1b2 + ξ2 = e1, (21)

where s1 and s2 denote fuzzy membership functions and ξ1, ξ2 are the slack
variables.

The function for assigning the fuzzy weights to the samples is given as

fuzzy mem =





1, for positive class samples,

z + z(
exp(c0(

d1−d2
d
− d2

r2
)−exp(−2c0))

exp(c0)−exp(−2c0) ), otherwise.
(22)

Here, z = 1
1+IR

, IR is imbalance ratio, d1 is the distance of the sample from
the positive class centroid and d2 is the distance of the sample from the
negative class centroid, distance between positive class and negative class
centroid is d, and negative class maximum distance from centroid is given by
r2, c0 is the exponential scale of the membership function.

Following the similar approach as in LSTSVM for solving the QPPs (20)
and (21), the optimal hyperplanes are given as

[
u1
b1

]
= −(T tT +

1

c1
RtR)−1T ts2e2, (23)

where R = [A e1] and T = [s2B s2e2] and

[
u2
b2

]
= (RTR +

1

c2
T tT )−1Rts1e1, (24)

where R = [s1A s1e1] and T = [B e2].
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3. Proposed fuzzy least squares projection twin support vector ma-
chines for class imbalance learning (FLSPTSVM-CIL)

In class imbalance learning, due to majority of the samples of a particu-
lar class, the classifier gets biased towards the majority class and results in
misclassifications. To reduce the effect of majority class samples, the pro-
posed FLSPTSVM-CIL assigns fuzzy weights to the data samples. The fuzzy
weights are assigned to the data samples using fuzzy membership function
given in equation (22) which uses IR information to improve the model per-
formance. To make the model more robust, the proposed FLSPTSVM-CIL
implements the structural risk minimization principle and seeks the projec-
tion axis to minimise the within class variance of the projected samples.
The proposed FLSPTSVM-CIL solves a system of equations and no explicit
toolbox is needed to solve the optimization problem.

The formulation of proposed FLSPTSVM-CIL model for both linear and
non-linear cases is given as follows:

3.1. Linear FLSPTSVM-CIL

The formulation of the proposed FLSPTSVM-CIL for linear case is given
as:

min
u1,b1

1

2
(‖V

1
2
1 u1‖2 + b21) +

c3
2

(‖u1‖2 + b21) +
1

2
ηt1η1

+
c1
2

(s2ξ2)
t(s2ξ2)

s.t. Au1 + e2b1 = η1,

− (Bu1 + e1b1) + ξ2 = e1 (25)

and

min
u2,b2

1

2
(‖V

1
2
2 u2‖2 + b22) +

c4
2

(‖u2‖2 + b22) +
1

2
ηt2η2

+
c2
2

(s1ξ1)
t(s1ξ1)

s.t. Bu2 + e1b2 = η2,

(Au2 + e2b2) + ξ1 = e2, (26)

where the positive and negative class samples are given by A and B, respec-
tively. V1 is the class variance of positive class and V2 is the class variance of
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negative class. Mathematically, the variance of each class is given by

V1 =

m1∑

i=1

(
x
(1)
i −

1

m1

m1∑

j=1

x
(1)
j

)(
x
(1)
i −

1

m1

m1∑

j=1

x
(1)
j

)t
(27)

and

V2 =

m2∑

i=1

(
x
(2)
i −

1

m2

m2∑

j=1

x
(2)
j

)(
x
(2)
i −

1

m2

m2∑

j=1

x
(2)
j

)t
, (28)

where, x
(1)
i ∈ A and x

(2)
i ∈ B.

The first term in the optimization problem (25) seeks projections such
that the samples of a class are clustered around its corresponding mean,
the second term implements the structural risk minimization principle, the
third term makes hyperplane proximal to the corresponding class and the
last term minimizes the error of the fuzzy weighted samples. Fuzzy weights
are assigned to data samples to reduce the effect of class imbalance, such
that the hyperplane is not biased towards the majority class samples. With
the similar objectives, the optimization problem (26) is designed to obtain
the second optimal hyperplane.

Using the constraints of (25) in its objective function, we get

min
u1,b1

1

2
(‖V

1
2
1 u1‖2 + b21) +

c3
2

(‖u1‖2 + b21) +
1

2
‖Au1 + e2b1‖2

+
c1
2
‖s2(Bu1 + e1b1 + e1)‖2. (29)

Take the gradient of (29) w.r.t. u1 and b1 and set them to zero, we get

[
u1
b1

]
= −

(
V̂1 +H tH + c3I + c1G

tG
)−1
× c1(Gts2e1). (30)

where H = [A e2], G = [s2B s2e1] and V̂1 =

[
V1 0
0 1

]
, here, 0 is the vector

of zeros with appropriate dimensions.
Similarly, the solution of (26) is given as:

[
u2
b2

]
=
(
V̂2 +RtR + c4I + c2T

tT
)−1
× c2(Rts1e2), (31)
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Algorithm 1 Linear FLSPTSVM-CIL.

Input: A ∈ Rm1×n, B ∈ Rm2×n.
1: Calculate the fuzzy weights using the fuzzy membership function (22).
2: Calculate the variance of the positive and negative class using (27) and

(28), respectively.
3: Select the best parameters by using the grid search method.
4: Determine (u1, b1), and (u2, b2) by solving the equations (30) and (31),

respectively.
5: For classifying testing point xi, assign the class label using function (32).

where R = [s1A s1e2], T = [B e1] and V̂2 =

[
V2 0
0 1

]
, here, 0 is the vector

of zeros with appropriate dimensions.

Note that addition of the regularization term makes the matrices
(
V̂1 +

H tH + c3I + c1G
tG
)

and
(
V̂2 +RtR + c4I + c2T

tT
)

as positive definite.

The class of a test sample x ∈ Rn is given as follows:

Class(x) = argmin
i=1,2

∣∣∣
(

(utix− uti
1

mi

mi∑

j=1

x
(i)
j

)
+ bi

∣∣∣. (32)

The linear proposed FLSPTSVM-CIL is summarized in Algorithm 1.

3.2. Non-Linear FLSPTSVM-CIL

The formulation of the proposed FLSPTSVM-CIL for non-linear case is
given as:

min
u1,b1

1

2
(‖V

1
2
1 u1‖2 + b21) +

c3
2

(‖u1‖2 + b21) +
1

2
ηt1η1

+
c1
2

(s2ξ2)
t(s2ξ2)

s.t. K(A,Ct)u1 + e2b1 = η1,

− (K(B,Ct)u1 + e1b1) + ξ2 = e1 (33)
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and

min
u2,b2

1

2
(‖V

1
2
2 u2‖2 + b22) +

c4
2

(‖u2‖2 + b22) +
1

2
ηt2η2

+
c2
2

(s1ξ1)
t(s1ξ1)

s.t. K(B,Ct)u2 + e1b2 = η2,

(K(A,Ct)u2 + e2b2) + ξ1 = e2, (34)

where, the positive and negative class samples are given by A and B, respec-
tively. V1 and V2 are the class variances of the positive and negative classes
respectively. Also, C = [A;B], K(A,Ct) and K(B,Ct) are the non-linear
transformation in the higher dimensional space.

Mathematically, the variance of each class is given by

V1 =

m1∑

i=1

(
x
(1)
i −

1

m1

m1∑

j=1

x
(1)
j

)(
x
(1)
i −

1

m1

m1∑

j=1

x
(1)
j

)t
(35)

and

V2 =

m2∑

i=1

(
x
(2)
i −

1

m2

m2∑

i=1

x
(2)
i

)(
x
(2)
i −

1

m2

m2∑

i=1

x
(2)
i

)t
, (36)

where, x
(1)
i ∈ K(A,Ct) and x

(2)
i ∈ K(B,Ct).

Similar to linear case, we can obtain the following
[
u1
b1

]
= −

(
V̂1 +H tH + c3I + c1G

tG
)−1
× c1(Gts2e1). (37)

where, H = [K(A,Ct) e2], G = [s2K(B,Ct) s2e1] and V̂1 =

[
V1 0
0 1

]
here,

0 is the vector of zeros with appropriate dimensions.
Similarly, the solution of QPP (34) is given as:

[
u2
b2

]
=
(
V̂2 +RtR + c4I + c2T

tT
)−1
× c2(Rts1e2), (38)

where, R = [s1K(A,Ct) s1e2], T = [K(B,Ct) e1] and V̂2 =

[
V2 0
0 1

]
, here,

0 is the vector of zeros with appropriate dimensions.
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Algorithm 2 Non-Linear FLSPTSVM-CIL.

Input: A ∈ Rm1×n, B ∈ Rm2×n.
1: Calculate the fuzzy weights using the fuzzy membership function (22).
2: Calculate the variance of the positive and negative class using (35) and

(36), respectively.
3: Select an appropriate kernel function K.
4: Select the best parameters by using the grid search method.
5: Determine (u1, b1), and (u2, b2) by solving the equations (37) and (38),

respectively.
6: For classifying testing point xi, assign the class label using function (39).

In both linear and non-linear cases of the proposed FLSPTSVM-CIL, the
data samples are weighted via fuzzy membership function given in (22).

The class of a test sample x ∈ Rn is given as follows:

Class(x) = argmin
i=1,2

∣∣∣
(
utiK(x,Ct)− uti

1

mi

mi∑

j=1

K(x
(i)
j , C

t)
)

+ bi

∣∣∣. (39)

Note that addition of the regularization term makes the matrices
(
V̂1 +

H tH+c3I+c1G
tG
)

and
(
V̂2+RtR+c4I+c2T

tT
)

as positive definite, hence,

the proposed FLSPTSVM-CIL shows more generalization and is more stable
as compared to RFLSTSVM and LSTSVM methods.

The non-linear proposed FLSPTSVM-CIL is summarized in Algorithm 2.

4. Experimental Results

In this section, we discuss the experimental setup used and specify the
range of hyperparameters used for the classification models. Also, we discuss
the different performance measures and statistical tests used to evaluate the
classification models. The performance of the models is evaluated on the
UCI and KEEL benchmark datasets and biological datasets. The biological
datasets included in this study are Alzheimer’s disease and Breast cancer
subjects.

All the experiments were conducted on Windows-10 with 128-GB RAM
Intel(R) Xeon(R) CPU E5-2697 v4 2.30GHz with MATLAB R2017b. We
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used Gaussian kernel, K(x, y) = exp−(‖x−y‖
2/µ2) where µ is a hyperparameter.

We divided the data randomly into 70 : 30 ratio for training and testing
sets for the training and evaluation of the models respectively. The optimal
parameters corresponding to the different classification models were obtained
from the ranges c0 = [0.5, 1, 1.5, 2, 2.5], µ = ci = [10−5, 10−4, . . . , 104, 105]
where i = 1, 2, 3, 4. We used 5-fold cross validation on the training data to
obtain the optimal parameters of different models via grid search approach.
In 5-fold cross-validation, the data sets are separated into five equally-sized
disjoint subsets, and the training of classifier is performed on all the subsets
except with the exception of one, which is called test data. The performance
of the classification models on the testing set using optimal parameters is
reported as the classification accuracy.

The performance of the baseline models (here, TSVM, LSTSVM, FTWSVM
and RFLSTSVM-CIL) and the proposed FLSPTSVM-CIL is evaluated with
area under the curve (AUC) or accuracy which is defined as:

AUC or Accuracy =
TP + TN

TP + TN + FP + FN
, (40)

Sensitivity =
TP

TP + FN
, (41)

Specificity =
TN

TN + FP
, (42)

where, TP, TN, FP, FN are the true positive, true negative, false positive
and false negative, respectively.

To evaluate the models statistically, we use Friedman test. In Friedman
test, each model is assigned a rank on each dataset such that the lower rank
is assigned to the model which achieves better accuracy on a given dataset.
Hence, lower the rank of the model the better performance it shows. Under
Null hypothesis, all models are performing equally and hence their average
ranks are equal, the Friedman statistics are distributed according to χ2

F with
(k − 1) degrees of freedom as:

χ2
F =

12N

k(k + 1)

[∑

j

R2
j −

k(k + 1)2

4

]
, (43)

FF =
(N − 1)χ2

F

N(k − 1)− χ2
F

, (44)

where Rj = 1
N

∑
i r
j
i and rji denotes the rank of the jth classification model

on the ith dataset. Here, N is the total number of datasets on which the k
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classification models are evaluated. FF is distributed with (k − 1)(N − 1)
degrees of freedom.

4.1. UCI [49] and KEEL [50] benchmark datasets

The performance of the models is evaluated on binary class datasets from
UCI [49] and KEEL [50] benchmark repositories. The details of the datasets
are given in Table-1. The first column gives the dataset name, second column
represents the training set size, third column represents the testing size, IR-all
represents the imbalance ratio in the whole dataset and IR-train represents
the imbalance ratio in the training set.

Table-2 gives the performance of the baseline models and the proposed
FLSPTSVM-CIL model on the given datasets. One can see that the pro-
posed FLSPTSVM-CIL model achieves better average accuracy than the
baseline models. The accuracy of proposed FLSPTSVM-CIL on abalone9-
18 dataset is atleast 9% better than the TSVM, LSTSVM, FTWSVM and
RFLSTSVM-CIL models. On ecoli-0-1-4-7 vs 2-3-5-6, the accuracy of pro-
posed FLSPTSVM-CIL is atleast 3% better than TSVM, 8% better than
LSTSVM and FTWSVM, 9% better than the RFLSTSVM-CIL models. Sim-
ilarly, in glass5 dataset the proposed FLSPTSVM-CIL achieved 93% accu-
racy followed by RFLSTSVM-CIL with 85%, TSVM and FTWSVM with
75% and LSTSVM with 71% accuracy. TSVM and proposed FLSPTSVM-
CIL model achieved 100% accuracy on new-thyroid1 dataset. The proposed
FLSPTSVM-CIL model achieved 100% accuracy on shuttle-6 vs 2-3 dataset
while as other baseline models achieved 75% accuracy.

The average rank of each model is given in Table-2. The average rank of
the TSVM, LSTSVM, FTWSVM, RFLSTSVM-CIL, and proposed FLSPTSVM-
CIL are 2.7759, 3.7759, 3.2586, 3, and 2.1897, respectively. At 5% level of
significance, the critical values of F (4, 112) = 2.445. After simple calcula-
tions, we get χ2

F = 15.9651 and FF = 4.4687. Hence, we reject the null
hypothesis. Thus, significant difference exists among the given models. To
analyze the difference among the models, we use pairwise post-hoc Nemenyi
test. With Nemenyi test, the critical difference at 5% level of significance,

CD = qα

√
k(k+1)
6N

= 2.7280
√

5×6
6×29 = 1.1327. One can see that the proposed

FLSPTSVM-CIL model is statistically better than the LSTSVM model.
However, Nemenyi test fails to detect the significant difference among the
proposed FLSPTSVM-CIL model and other models except LSTSVM model.
From Table-2, it is clear that the proposed FLSPTSVM-CIL model achieved
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better average accuracy and lower average rank as compared to the given
baseline models. To further evaluate the models, we used overall win-tie-loss
test. One can see from Table-2 that the proposed FLSPTSVM-CIL emerged
as the overall winner in 11 datasets followed by RFLSTSVM-CIL with 5
and FTWSVM with 4 wins. TSVM and LSTSVM models achieved 2 overall
wins. Hence, the performance of the proposed FLSPTSVM-CIL is better as
compared to the baseline models.

To evaluate the sensitivity of the proposed FLSPTSVM-CIL model with
the varying hyperparameters c1 and c3, the Figures-1a to Figure-1f are plot-
ted. One can see that to obtain the better performance, we need to choose
the hyperparameters carefully.

4.2. Experiments on real-world biomedical images

Here, we evaluate the performance of the models in real world biomedical
benchmark datasets. We evaluated the models for classification of Alzheimer’s
disease subjects and breast cancer subjects.

4.2.1. Classification of Alzheimer’s disease subjects

The images of Alzheimer’s disease (AD) subjects were downloaded from
Alzheimer’s Disease Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu).
In 2003, ADNI as a public–private partnership was launched, with Michael
W. Weiner as the Principal Investigator, with the objective of analyzing the
neuroimaging techniques like magnetic resonance imaging (MRI), positron
emission tomography (PET), other biological markers, and clinical neuropsy-
chological tests for estimation of the onset of Alzheimer’s disease from the
state of mild cognitive impairment. For further details, refer to www.adni-
info.org. For the classification of AD subjects, we used features obtained
with Volume based morphometry (VolBM). For extracting the features, we
followed the same pipeline as given in [51]. The performance of the proposed
FLSPTSVM-CIL model and the baseline models is evaluated in terms of
the classification of the control normal subjects versus Alzheimer’s disease
subjects (CN vs AD), control normal subjects versus mild cognitive impair-
ment subjects (CN vs MCI), and mild cognitive impairment subjects versus
Alzheimer’s disease subjects (MCI vs AD). We evaluated the performance of
the proposed FLSPTSVM-CIL and the baseline models at varying level of
feature percentage. The details of features and the samples of each set used
for training and testing is given in Table-3.
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Figure 1: The sensitivity of the proposed FLSPTSVM-CIL model with the varying hyper-
parameters c1 and c3.
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Table 1: The details of the UCI benchmark datasets.

Datasets Train Test IR-All IR-Train
abalone9-18 (510× 8) (221× 8) 16.4 16
aus (481× 15) (209× 15) 1.25 1.26
brwisconsin (477× 10) (206× 10) 0.54 0.69
bupa-or-liver-disorders (240× 7) (105× 7) 1.38 1.31
checkerboard Data (481× 15) (209× 15) 1.25 1.26
cleve (206× 14) (91× 14) 1.17 1.12
cmc (1030× 10) (443× 10) 0.75 0.76
ecoli-0-1-4-7 vs 2-3-5-6 (234× 8) (102× 8) 10.59 11.32
ecoli-0-1-4-7 vs 5-6 (231× 7) (101× 7) 12.28 12.59
ecoli-0-1 vs 2-3-5 (169× 8) (75× 8) 9.17 8.94
ecoli-0-1 vs 5 (167× 7) (73× 7) 11 10.93
ecoli-0-2-3-4 vs 5 (140× 8) (62× 8) 9.1 8.33
ecoli-0-4-6 vs 5 (141× 7) (62× 7) 9.15 9.85
ecoli-0-6-7 vs 5 (153× 7) (67× 7) 10 9.93
ecoli4 (234× 8) (102× 8) 15.8 14.6
glass5 (148× 10) (66× 10) 22.78 20.14
heart-stat (188× 14) (82× 14) 0.8 0.83
iono (244× 34) (107× 34) 0.56 0.59
monk2 (419× 8) (182× 8) 1.92 1.95
new-thyroid1 (149× 6) (66× 6) 5.14 4.73
ripley (874× 3) (376× 3) 1 1.01
segment0 (1614× 20) (694× 20) 6.02 6.05
shuttle-6 vs 2-3 (160× 10) (70× 10) 22 25.67
shuttle-c0-vs-c4 (1279× 10) (550× 10) 13.87 13.87
sonar (144× 61) (64× 61) 1.14 1.12
transfusion (522× 5) (226× 5) 3.2 2.9
vehicle1 (591× 19) (255× 19) 2.9 3.1
vehicle2 (591× 19) (255× 19) 2.88 2.79
vowel (690× 11) (298× 11) 9.98 9.95
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Table 2: The classification performance of the models on UCI benchmark datasets with
Gaussian kernel.

Datasets TSVM LSTSVM FTWSVM RFLSTSVM-CIL Proposed FLSPTSVM-CIL
AUC AUC AUC AUC AUC

(c1 = c2, µ) (c1 = c2, µ) (c1 = c2, µ) (c0, c1 = c2, µ) (c0, c1 = c2, c3 = c4, µ)
abalone9-18 0.8295 0.7083 0.8046 0.7117 0.9105

(102, 1) (1, 0.1) (10−2, 1) (2, 0.1, 0.1) (1.5, 1, 10−5, 10)
aus 0.8516 0.7191 0.8512 0.8458 0.8623

(0.1, 102) (10−4, 104) (10−5, 104) (0.5, 1, 104) (1.5, 1, 0.1, 103)
brwisconsin 0.9685 0.9858 0.9938 0.9907 0.9876

(10−3, 102) (10−2, 10) (10−5, 102) (0.5, 10−2, 105) (0.5, 0.1, 0.1, 103)
bupa-or-liver-disorders 0.6833 0.7111 0.7111 0.6965 0.7121

(0.1, 104) (1, 104) (1, 104) (2, 1, 104) (1, 1, 10−4, 104)
checkerboard Data 0.8516 0.7191 0.8512 0.8458 0.8623

(0.1, 102) (10−4, 104) (10−5, 104) (0.5, 1, 104) (1.5, 1, 0.1, 103)
cleve 0.8287 0.8483 0.8162 0.8118 0.8118

(10−5, 104) (10−3, 103) (10−5, 104) (2.5, 0.1, 104) (0.5, 10−5, 1, 10)
cmc 0.6892 0.6776 0.7061 0.6977 0.7202

(10−2, 102) (1, 102) (10−5, 102) (0.5, 1, 102) (2.5, 10−3, 10−4, 102)
ecoli-0-1-4-7 vs 2-3-5-6 0.9 0.85 0.85 0.8446 0.9391

(1, 104) (10, 103) (0.1, 104) (1, 10−2, 104) (2, 10−5, 10−4, 102)
ecoli-0-1-4-7 vs 5-6 0.875 0.875 0.8125 0.8159 0.8535

(10, 105) (1, 104) (1, 104) (1.5, 10−2, 105) (1.5, 10−5, 10−4, 102)
ecoli-0-1 vs 2-3-5 0.7143 0.7143 0.6429 0.7784 0.8424

(0.1, 104) (1, 103) (10−5, 103) (1.5, 10−5, 103) (1, 103, 104, 103)
ecoli-0-1 vs 5 0.8333 0.8259 0.6667 0.8794 0.9017

(1, 105) (1, 104) (0.1, 105) (1.5, 10−2, 104) (0.5, 10−4, 10−2, 102)
ecoli-0-2-3-4 vs 5 0.9737 0.9912 1 0.9825 0.9825

(10, 104) (0.1, 104) (10−3, 104) (2.5, 10−2, 104) (1, 105, 10−5, 104)
ecoli-0-4-6 vs 5 0.8571 0.8571 0.8481 0.8571 0.9286

(0.1, 104) (1, 104) (10−2, 104) (2, 10−5, 103) (1.5, 10−5, 10−4, 102)
ecoli-0-6-7 vs 5 0.7418 0.8251 0.7923 0.7842 0.8005

(10−2, 103) (1, 104) (10−5, 104) (2.5, 10−5, 104) (1.5, 104, 10−4, 104)
ecoli4 1 0.9 1 0.9588 0.9794

(10, 102) (0.1, 0.1) (1, 102) (0.5, 10−2, 102) (1, 10, 10−3, 102)
glass5 0.75 0.7188 0.75 0.8516 0.9375

(1, 10) (10, 10) (1, 102) (2.5, 10−3, 103) (2.5, 105, 10−5, 102)
heart-stat 0.8435 0.8435 0.8684 0.8292 0.8435

(1, 104) (1, 104) (1, 104) (0.5, 1, 104) (2, 10, 10−5, 105)
iono 0.9575 0.8931 0.8938 0.9514 0.9367

(10−3, 1) (0.1, 10) (10−2, 102) (0.5, 10−3, 1) (2.5, 10−2, 10−2, 1)
monk2 0.7349 0.7222 0.7385 0.6899 0.7365

(10, 102) (1, 10) (104, 102) (0.5, 10−3, 10) (0.5, 102, 10−4, 10)
new-thyroid1 1 0.9649 0.9444 0.9357 1

(1, 103) (102, 103) (10−5, 103) (0.5, 0.1, 105) (0.5, 0.1, 10−4, 104)
ripley 0.9178 0.9079 0.923 0.9254 0.9151

(10−2, 1) (10−5, 0.01) (0.1, 0.1) (2, 1, 0.1) (0.5, 0.1, 10−2, 0.1)
segment0 0.9892 0.99 0.9842 0.9916 0.9892

(10, 104) (10−2, 103) (10−2, 103) (1, 0.1, 104) (0.5, 10−2, 10−3, 102)
shuttle-6 vs 2-3 0.75 0.75 0.75 0.75 1

(10−5, 105) (10−4, 105) (10−5, 105) (0.5, 10−5, 105) (0.5, 10−5, 10−5, 104)
shuttle-c0-vs-c4 1 0.9595 0.9865 1 0.9865

(10−2, 105) (0.1, 103) (1, 105) (2.5, 0.1, 104) (2.5, 104, 10−4, 104)
sonar 0.7217 0.7074 0.7217 0.733 0.7276

(10, 10) (1, 10) (10, 10) (0.5, 102, 1) (1, 1, 10−4, 10)
transfusion 0.6255 0.6116 0.6065 0.6146 0.6113

(10, 105) (1, 103) (0.1, 105) (0.5, 0.1, 104) (0.5, 102, 102, 103)
vehicle1 0.8271 0.7053 0.7588 0.8284 0.7684

(102, 105) (1, 103) (1, 104) (0.5, 0.1, 104) (2, 10, 10−5, 104)
vehicle2 0.9974 0.941 0.9893 0.9922 0.9974

(1, 104) (0.1, 103) (1, 104) (2.5, 0.1, 104) (0.5, 102, 10−5, 104)
vowel 0.7778 0.7407 0.7704 0.9389 0.7778

(10−4, 1) (10−4, 1) (10−2, 1) (0.5, 10−3, 1) (0.5, 10−5, 10−5, 1)
Average-Accuracy 0.8445 0.816 0.8287 0.846 0.8732
Average-Rank 2.7759 3.7759 3.2586 3 2.1897
Overall Win-Tie-Loss 2-0-4 2-0-13 4-0-6 5-0-4 11-0-0
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The generalization performance of the proposed FLSPTSVM-CIL and the
baseline models is evaluated on CN vs AD subjects and is given in Table-4.
One can see that the average AUC of the proposed FLSPTSVM-CIL is better
as compared to LSTSVM model. However, the generalization of other models
is better as compared to the proposed FLSPTSVM-CIL model. As there is
no free lunch theorem, the performance of the proposed FLSPTSVM-CIL
model on CN vs AD is lower as compared to the rest of the models.

In Table-5, the performance evaluation of the proposed FLSPTSVM-CIL
model and the baseline models is done on CN vs MCI subjects. Similar to
CN vs AD, here the performance of the proposed FLSPTSVM-CIL model is
better with respect to LSTSVM model.

In Table-6, the generalization performance of the proposed FLSPTSVM-
CIL model and the proposed model is evaluated on MCI vs AD subjects. One
can see from the Table-6 that the average AUC of the proposed FLSPTSVM-
CIL model is better as compared to all the baseline models. Also, the average
rank of the proposed FLSPTSVM-CIL model is lowest of all, hence, the
generalization performance of the proposed FLSPTSVM-CIL model is better
both in terms of average AUC and average rank.

From the above analysis, one can see that the performance of the proposed
FLSPTSVM-CIL is better in MCI vs AD, which is hard to classify [52].

4.2.2. Classification of Breast cancer subjects

We evaluated the given models for classification of breast cancer subjects.
We use BreakHis [53] breast cancer dataset which includes 1240 images with
400X magnification. The data includes two categories: benign and malig-
nant. The benign includes subclasses: adenosis (AN), fibroadenoma (FA),
phyllodes tumor (PT), and tubular adenoma (TA) having 106, 237, 115, and
130 images, respectively. The subclasses in malignant are ductal carcinoma
(DC), lobular carcinoma (LC), mucinous carcinoma (MC), papillary carci-
noma (PC) with 208, 137, 169, and 138 images, respectively. To extract the
features, we followed the same pipeline as given in [54]. We evaluated the
generalization performance of the proposed FLSPTSVM-CIL and the base-
line models for pairwise classification of the subclasses of the benign and
subclasses of malignant images. The details of the number of samples and
the feature size of each pairwise subclass classification datasets is given in
Table-7.

The experimental results of the classification of breast cancer subjects are
given in Table-8. The accuracy of the proposed FLSPTSVM-CIL on AN vs
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Table 3: Dataset specifications of the subjects of Alzheimer’s disease. Here, CN: control
normal, AD: Alzheimer’s disease, MCI: mild cognitive impairment.

CN vs AD
Features (%) Train Test IR-All IR-Train
5 (289× 4) (126× 4) 1.21925 1.33065
10 (289× 9) (126× 9) 1.21925 1.33065
15 (289× 13) (126× 13) 1.21925 1.33065
20 (289× 18) (126× 18) 1.21925 1.33065
25 (289× 22) (126× 22) 1.21925 1.33065
30 (289× 27) (126× 27) 1.21925 1.33065
35 (289× 31) (126× 31) 1.21925 1.33065
40 (289× 36) (126× 36) 1.21925 1.33065
45 (289× 40) (126× 40) 1.21925 1.33065
50 (289× 45) (126× 45) 1.21925 1.33065
100 (289× 91) (126× 91) 1.21925 1.33065

CN vs MCI
Features (%) Train Test IR-All IR-Train
5 (437× 4) (189× 4) 0.572864 0.577617
10 (437× 9) (189× 9) 0.572864 0.577617
15 (437× 13) (189× 13) 0.572864 0.577617
20 (437× 18) (189× 18) 0.572864 0.577617
25 (437× 22) (189× 22) 0.572864 0.577617
30 (437× 27) (189× 27) 0.572864 0.577617
35 (437× 31) (189× 31) 0.572864 0.577617
40 (437× 36) (189× 36) 0.572864 0.577617
45 (437× 40) (189× 40) 0.572864 0.577617
50 (437× 45) (189× 45) 0.572864 0.577617
100 (437× 91) (189× 91) 0.572864 0.577617

MCI vs AD
Features (%) Train Test IR-All IR-Train
5 (408× 4) (177× 4) 2.12834 2.04478
10 (408× 9) (177× 9) 2.12834 2.04478
15 (408× 13) (177× 13) 2.12834 2.04478
20 (408× 18) (177× 18) 2.12834 2.04478
25 (408× 22) (177× 22) 2.12834 2.04478
30 (408× 27) (177× 27) 2.12834 2.04478
35 (408× 31) (177× 31) 2.12834 2.04478
40 (408× 36) (177× 36) 2.12834 2.04478
45 (408× 40) (177× 40) 2.12834 2.04478
50 (408× 45) (177× 45) 2.12834 2.04478
100 (408× 91) (177× 91) 2.12834 2.04478
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Table 4: The classification performance of the models on CN vs AD subjects of Alzheimer’s
disease

Feaure(%) TSVM LSTSVM FTWSVM RFLSTSVM-CIL Proposed FLSPTSVM-CIL
AUC AUC AUC AUC AUC

(Sens., Spec.) (Sens., Spec.) (Sens., Spec.) (Sens., Spec.) (Sens., Spec.)
5 0.7381 0.754 0.7381 0.7222 0.7222

(0.6667, 0.8095) (0.6349, 0.873) (0.6349, 0.8413) (0.6349, 0.8095) (0.7302, 0.7143)
10 0.7619 0.7143 0.7619 0.7778 0.7222

(0.7143, 0.8095) (0.4444, 0.9841) (0.6984, 0.8254) (0.8254, 0.7302) (0.6032, 0.8413)
15 0.8333 0.8254 0.8333 0.7937 0.8016

(0.7619, 0.9048) (0.8095, 0.8413) (0.7778, 0.8889) (0.7619, 0.8254) (0.7619, 0.8413)
20 0.8254 0.8175 0.8254 0.8651 0.8254

(0.8095, 0.8413) (0.7937, 0.8413) (0.7778, 0.873) (0.7937, 0.9365) (0.8095, 0.8413)
25 0.8413 0.7619 0.8413 0.8254 0.7937

(0.7619, 0.9206) (0.5238, 1) (0.7778, 0.9048) (0.8254, 0.8254) (0.8254, 0.7619)
30 0.8492 0.7778 0.8254 0.8413 0.8016

(0.7778, 0.9206) (0.5556, 1) (0.7937, 0.8571) (0.746, 0.9365) (0.8095, 0.7937)
35 0.8333 0.8492 0.8492 0.8175 0.7937

(0.7937, 0.873) (0.746, 0.9524) (0.8095, 0.8889) (0.8254, 0.8095) (0.8095, 0.7778)
40 0.8571 0.8413 0.8333 0.8095 0.8254

(0.7937, 0.9206) (0.8095, 0.873) (0.7937, 0.873) (0.8095, 0.8095) (0.8095, 0.8413)
45 0.8571 0.5873 0.8333 0.8095 0.8254

(0.7937, 0.9206) (0.1746, 1) (0.7937, 0.873) (0.8095, 0.8095) (0.8095, 0.8413)
50 0.8571 0.5714 0.8333 0.8095 0.8254

(0.7937, 0.9206) (0.1429, 1) (0.7937, 0.873) (0.8095, 0.8095) (0.8095, 0.8413)
100 0.8571 0.8413 0.8333 0.8095 0.8254

(0.7937, 0.9206) (0.8095, 0.873) (0.7937, 0.873) (0.8095, 0.8095) (0.8095, 0.8413)
Average AUC 0.8283 0.7583 0.8189 0.8074 0.7965
Average Rank 1.7273 3.5909 2.3182 3.5 3.8636

Overall Win-Tie-Loss 5-0- 0 1-0- 6 0-0- 0 2-0- 3 0-0- 1
Sens. denotes sensitivity, Spec. denotes specificity
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Table 5: The classification performance of the models on CN vs MCI subjects of
Alzheimer’s disease

Feaure(%) TSVM LSTSVM FTWSVM RFLSTSVM-CIL Proposed FLSPTSVM-CIL
AUC AUC AUC AUC AUC

(Sens., Spec.) (Sens., Spec.) (Sens., Spec.) (Sens., Spec.) (Sens., Spec.)
5 0.5788 0.5413 0.5816 0.6074 0.6082

(0.4959, 0.6618) (0.0826, 1) (0.4132, 0.75) (0.3471, 0.8676) (0.4959, 0.7206)
10 0.6087 0.4876 0.6032 0.6078 0.593

(0.5702, 0.6471) (0.9752, 0) (0.4711, 0.7353) (0.4215, 0.7941) (0.5537, 0.6324)
15 0.6289 0.6336 0.6569 0.6606 0.6173

(0.5372, 0.7206) (0.3554, 0.9118) (0.5785, 0.7353) (0.5124, 0.8088) (0.6612, 0.5735)
20 0.6569 0.5289 0.6431 0.6615 0.6569

(0.5785, 0.7353) (0.0579, 1) (0.595, 0.6912) (0.5289, 0.7941) (0.5785, 0.7353)
25 0.6923 0.5 0.6794 0.6427 0.6247

(0.6198, 0.7647) (0, 1) (0.6529, 0.7059) (0.5207, 0.7647) (0.6612, 0.5882)
30 0.656 0.5083 0.69 0.6574 0.6619

(0.562, 0.75) (0.0165, 1) (0.6446, 0.7353) (0.5207, 0.7941) (0.6033, 0.7206)
35 0.6234 0.4867 0.6665 0.6335 0.6234

(0.5702, 0.6765) (0.9587, 0.0147) (0.686, 0.6471) (0.4876, 0.7794) (0.5702, 0.6765)
40 0.6192 0.6441 0.6197 0.6326 0.6004

(0.562, 0.6765) (0.3471, 0.9412) (0.6364, 0.6029) (0.4711, 0.7941) (0.5537, 0.6471)
45 0.6192 0.5957 0.6197 0.6326 0.6004

(0.562, 0.6765) (0.7355, 0.4559) (0.6364, 0.6029) (0.4711, 0.7941) (0.5537, 0.6471)
50 0.6192 0.6422 0.6197 0.6326 0.6004

(0.562, 0.6765) (0.5785, 0.7059) (0.6364, 0.6029) (0.4711, 0.7941) (0.5537, 0.6471)
100 0.6192 0.5957 0.6197 0.6326 0.6004

(0.562, 0.6765) (0.7355, 0.4559) (0.6364, 0.6029) (0.4711, 0.7941) (0.5537, 0.6471)
Average AUC 0.6293 0.5604 0.6363 0.6365 0.617
Average Rank 3.0909 4.0909 2.3636 1.8182 3.6364

Overall Win-Tie-Loss 2-0- 0 2-0- 8 2-0- 0 4-0- 0 1-0- 3
Sens. denotes sensitivity, Spec. denotes specificity
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Table 6: The classification performance of the models on MCI vs AD subjects of
Alzheimer’s disease

Feaure(%) TSVM LSTSVM FTWSVM RFLSTSVM-CIL Proposed FLSPTSVM-CIL
AUC AUC AUC AUC AUC

(Sens., Spec.) (Sens., Spec.) (Sens., Spec.) (Sens., Spec.) (Sens., Spec.)
5 0.515 0.504 0.6432 0.6419 0.6299

(0.1509, 0.879) (1, 0.0081) (0.5283, 0.7581) (0.566, 0.7177) (0.6792, 0.5806)
10 0.642 0.5444 0.6233 0.6408 0.6608

(0.6226, 0.6613) (1, 0.0887) (0.7547, 0.4919) (0.7736, 0.5081) (0.6604, 0.6613)
15 0.6526 0.6445 0.6608 0.6271 0.6757

(0.5472, 0.7581) (0.4906, 0.7984) (0.6038, 0.7177) (0.5283, 0.7258) (0.6981, 0.6532)
20 0.6756 0.5444 0.6163 0.6732 0.6636

(0.6415, 0.7097) (1, 0.0887) (0.4906, 0.7419) (0.8302, 0.5161) (0.6981, 0.629)
25 0.6271 0.5866 0.6459 0.6597 0.6665

(0.5849, 0.6694) (0.4151, 0.7581) (0.566, 0.7258) (0.8113, 0.5081) (0.8491, 0.4839)
30 0.6554 0.6228 0.6648 0.6732 0.6731

(0.6415, 0.6694) (0.3585, 0.8871) (0.6038, 0.7258) (0.8302, 0.5161) (0.7736, 0.5726)
35 0.6407 0.5 0.6406 0.6678 0.6786

(0.6604, 0.621) (1, 0) (0.6038, 0.6774) (0.8113, 0.5242) (0.8491, 0.5081)
40 0.6299 0.6755 0.6244 0.6597 0.6489

(0.6226, 0.6371) (0.5849, 0.7661) (0.5472, 0.7016) (0.8113, 0.5081) (0.7736, 0.5242)
45 0.6299 0.5823 0.6244 0.6597 0.6489

(0.6226, 0.6371) (0.2453, 0.9194) (0.5472, 0.7016) (0.8113, 0.5081) (0.7736, 0.5242)
50 0.6299 0.6203 0.6244 0.6597 0.6489

(0.6226, 0.6371) (0.4906, 0.75) (0.5472, 0.7016) (0.8113, 0.5081) (0.7736, 0.5242)
100 0.6299 0.5769 0.6244 0.6597 0.6489

(0.6226, 0.6371) (0.2264, 0.9274) (0.5472, 0.7016) (0.8113, 0.5081) (0.7736, 0.5242)
Average AUC 0.6413 0.5898 0.6349 0.6581 0.6614
Average Rank 3 4.5 3.7 2 1.8

Overall Win-Tie-Loss 1-0- 0 1-0- 8 1-0- 0 4-0- 3 4-0- 2
Sens. denotes sensitivity, Spec. denotes specificity
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Table 7: Dataset specifications of the subjects of Breast cancer disease. Here,
AN:Adenosis, FA:Fibroadenoma, PT:Phyllodes tumor, TA:Tubular adenoma, DC:Ductal
carcinoma, LC:Lobular carcinoma, MC:Mucinous carcinoma, PC: Papillary carcinoma.

Subjects Train Test IR-All IR-Train
AN vs DC (218× 768) (96× 768) 1.96226 2.15942
AN vs LC (169× 768) (74× 768) 1.29245 1.48529
AN vs MC (191× 768) (84× 768) 1.59434 1.80882
AN vs PC (169× 768) (75× 768) 1.30189 1.48529
FA vs DC (310× 768) (135× 768) 0.877637 0.91358
FA vs LC (260× 768) (114× 768) 0.578059 0.585366
FA vs MC (283× 768) (123× 768) 0.71308 0.736196
FA vs PC (261× 768) (114× 768) 0.582278 0.591463
PT vs DC (225× 768) (98× 768) 1.8087 1.96053
PT vs LC (175× 768) (77× 768) 1.1913 1.36486
PT vs MC (197× 768) (87× 768) 1.46957 1.62667
PT vs PC (176× 768) (77× 768) 1.2 1.37838
TA vs DC (235× 768) (103× 768) 1.6 1.86585
TA vs LC (185× 768) (82× 768) 1.05385 1.2561
TA vs MC (208× 768) (91× 768) 1.3 1.47619
TA vs PC (186× 768) (82× 768) 1.06154 1.26829

LC subjects achieved 59% accuracy followed by FTWSVM with 57%. In AN
vs PC subjects, the proposed FLSPTSVM-CIL achieved highest 75% accu-
racy and the lowest by LSTSVM with 50% accuracy. Similarly, in FA vs LC
subjects 70% accuracy is achieved by the proposed FLSPTSVM-CIL which
is highest among the baseline models. In PT vs PC and TA vs DC, the pro-
posed FLSPTSVM-CIL achieved the maximum accuracy with 74% and 77%,
respectively, among the baseline models. One can see that the generalization
performance of the proposed FLSPTSVM-CIL is better as compared to the
baseline models. The proposed FLSPTSVM-CIL achieved highest average
AUC. Also, the average rank of the proposed FLSPTSVM-CIL is lowest as
compared to all the baseline models except FTWSVM model. In terms of
overall win-tie-loss performance comparison, the proposed FLSPTSVM-CIL
model achieved highest number of overall wins 5 as compared to the baseline
models.
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Table 8: The classification performance of the models on Breast Cancer benchmark dataset

Subjects TSVM LSTSVM FTWSVM RFLSTSVM-CIL Proposed FLSPTSVM-CIL
AUC AUC AUC AUC AUC

(Sens., Spec.) (Sens., Spec.) (Sens., Spec.) (Sens., Spec.) (Sens., Spec.)
AN vs DC 0.8901 0.8106 0.8511 0.822 0.8461

(0.8649, 0.9153) (0.7568, 0.8644) (0.8378, 0.8644) (1, 0.6441) (0.8108, 0.8814)
AN vs LC 0.5607 0.5475 0.5746 0.4788 0.5906

(0.3158, 0.8056) (0.2895, 0.8056) (0.3158, 0.8333) (0.7632, 0.1944) (0.7368, 0.4444)
AN vs MC 0.611 0.5847 0.5932 0.6413 0.6407

(0.5263, 0.6957) (0.4737, 0.6957) (0.4474, 0.7391) (1, 0.2826) (0.8684, 0.413)
AN vs PC 0.7457 0.5 0.6799 0.6369 0.7582

(0.8158, 0.6757) (0, 1) (0.6842, 0.6757) (0.8684, 0.4054) (0.8947, 0.6216)
FA vs DC 0.845 0.7633 0.86 0.8517 0.8133

(0.84, 0.85) (0.8267, 0.7) (0.8533, 0.8667) (0.8533, 0.85) (0.8267, 0.8)
FA vs LC 0.6168 0.6221 0.6306 0.6099 0.7098

(0.7945, 0.439) (0.7808, 0.4634) (0.6027, 0.6585) (0.7808, 0.439) (0.7123, 0.7073)
FA vs MC 0.5285 0.5 0.5557 0.5256 0.5454

(0.6081, 0.449) (1, 0) (0.6216, 0.4898) (0.4595, 0.5918) (0.6622, 0.4286)
FA vs PC 0.5337 0.5673 0.5765 0.6574 0.6473

(0.726, 0.3415) (0.6712, 0.4634) (0.6164, 0.5366) (0.5342, 0.7805) (0.6849, 0.6098)
PT vs DC 0.8977 0.8977 0.8722 0.8807 0.8807

(0.8462, 0.9492) (0.8462, 0.9492) (0.8462, 0.8983) (0.8462, 0.9153) (0.8462, 0.9153)
PT vs LC 0.4692 0.4658 0.5024 0.56 0.5552

(0.2439, 0.6944) (0.2927, 0.6389) (0.3659, 0.6389) (0.5366, 0.5833) (0.8049, 0.3056)
PT vs MC 0.5237 0.5686 0.596 0.621 0.5601

(0.175, 0.8723) (0.35, 0.7872) (0.575, 0.617) (0.625, 0.617) (0.95, 0.1702)
PT vs PC 0.607 0.6839 0.6386 0.6264 0.7463

(0.6585, 0.5556) (0.9512, 0.4167) (0.8049, 0.4722) (0.7805, 0.4722) (0.8537, 0.6389)
TA vs DC 0.7371 0.7553 0.7566 0.7553 0.7712

(0.5833, 0.8909) (0.5833, 0.9273) (0.6042, 0.9091) (0.5833, 0.9273) (0.8333, 0.7091)
TA vs LC 0.7782 0.7114 0.7365 0.6422 0.6642

(0.7917, 0.7647) (0.6875, 0.7353) (0.7083, 0.7647) (0.6667, 0.6176) (0.9167, 0.4118)
TA vs MC 0.4643 0.585 0.6164 0.5524 0.6155

(0.2174, 0.7111) (0.3478, 0.8222) (0.5217, 0.7111) (0.2826, 0.8222) (0.6087, 0.6222)
TA vs PC 0.6593 0.5441 0.565 0.5607 0.5147

(0.5833, 0.7353) (0.5, 0.5882) (0.5417, 0.5882) (0.5625, 0.5588) (0.5, 0.5294)
Average AUC 0.6543 0.6317 0.6628 0.6514 0.6787
Average Rank 3.2188 3.8125 2.375 3.1875 2.4063
Overall Win-Tie-Loss (3-0-5) (0-0-6) (3-0-1) (4-0-3) (5-0-1)
Sens. denotes sensitivity, Spec. denotes specificity
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5. Conclusion and Future work

In this paper, we formulate a novel fuzzy least squares projection twin sup-
port vector machines for class imbalance learning (FLSPTSVM-CIL) which
constructs two hyperplanes such that the samples of each class are clus-
tered around its corresponding mean and are as far as possible from the
samples of other class. To handle the class imbalance problems, we incorpo-
rated fuzzy membership weights to overcome the bias towards the majority
class samples. Unlike twin support vector machines which solves the dual
problem by optimizing the quadratic programming problem, the proposed
FLSPTSVM-CIL model obtains the two optimal hyperplanes by solving a
system of linear equations. Experimental results show that the performance
of the proposed FLSPTSVM-CIL model is better as compared to the baseline
models. We also evaluated the performance of the proposed FLSPTSVM-
CIL model on real world datasets which include classification of Alzheimer’s
disease patients and the classification of the breast cancer patients. Exper-
imental results show that the generalization performance of the proposed
FLSPTSVM-CIL model for the classification of the breast cancer patients
and the mild cognitive impairment versus Alzheimer’s data is better as com-
pared to the baseline models. In future, we look forward to extend the
proposed FLSPTSVM-CIL model to large scale problems. The codes will be
available at https://github.com/mtanveer1.
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Highlights 

1. A novel fuzzy least squares projection twin SVM is proposed for class imbalance 
learning. 

2. The proposed algorithm implements the structural risk minimization principle. 
3. The matrices appear in the proposed primal formulation are positive definite. 
4. The proposed model seeks projections such that the samples of each class are 

clustered around its corresponding mean and the samples of different classes are as far 
as possible. 

5. Fuzzy weights are assigned in the proposed model to handle the  class imbalance 
problems. 

6. Applications of proposed models are shown on the classification of breast cancer and 
Alzheimer’s  disease  subjects. 
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